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We consider the evolution of slender viscous fibres with cross-section containing holes
with application to fabrication of microstructured optical fibres. The fibre evolution
is driven by either prescribing velocity or a force at the ends of the fibre, and the free
surfaces evolve under the influence of surface tension, internal pressurization, inertia
and gravity. We use the fact that ratio of the typical fibre radius to the typical fibre
length is small to perform an asymptotic analysis of the full three-dimensional Navier–
Stokes equations similar to earlier work on non-axisymmetric (but simply connected)
fibres. A numerical solution to the multiply connected steady-state drawing problem
is formulated based on the solution the Sherman–Lauricella equation. The effects of
different drawing and material parameters like surface tension, gravity, inertia and
internal pressurization on the drawing are examined, and extension of the method to
non-isothermal evolution is presented.

1. Introduction
In this study, we aim to develop a model to predict the shape evolution of thin

viscous fibres that contain holes in cross-section as they are drawn from an intial
shape. Our motivation is the development of a relatively new class of optical fibres,
the microstructured optical fibre. The cross-section of the microstructured optical
fibre typically contains arrays of air holes that run through the length of the fibre.
Such fibres are known as holey fibres, microstructured optical fibres, photonic crystal
fibres (PCF), etc. These fibres have some distinct advantages to regular optical fibres,
such as endless single mode propagation, large mode areas ranging over three orders
of magnitude, photonic bandgaps at optical wavelengths, nonlinear effects such as
supercontinuum generation, etc. (Birks et al. 1995; Birks, Knight & Russell 1997;
Russel 2003). In addition to optical applications, these fibres have other uses also,
such as atom-guiding fibres and other atomic transport and deposition processes. The
range of applications described render it important to have precise control over the
structure and size of holes along the entire length of the fibre.

Typically, as with most optical fibres, these fibres are produced by heating and
drawing a preform (typically centimetres in diameter) down to the required diameter
(typically 125 μm) with typical hole sizes between 10 nm and 10 μm. The preforms
for PCFs may be manufactured in several ways, and some of the more common
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approaches are stacking capillaries around a solid rod, directly drilling the holes in
the preform, or using sol–gel methods to produce the desired structure directly in the
preform. Irrespective of the method of manufacturing the preform, the geometry of
the final fibre is influenced by parameters such as draw-furnace temperature, drawing
speed, feed speed, etc. When small-diameter holes are required, the high temperatures
or low speeds can cause some of these holes to collapse due to surface tension. One
possible method to reduce or control the collapse is to pressurize the holes from
inside. It has been found that the process is extremely sensitive to the degree of
pressurization and that some of the holes may even explode during drawing (Bise
et al. 2002). Also, it may be necessary to control the collapse to produce holes with
a very-fine-tuned diameter, closely packed holes or holes with very small diameters.
In addition, the location and size of holes also have an impact on the mechanical
performance of the fibre. We are interested in the shape evolution of the holes during
the drawing of microstructured optical fibres and also to determine the effect of
the different drawing parameters on collapse/explosion of holes. The main purpose
of this study is to develop a numerical method capable of simulating the drawing
process for a large variety of geometries and also to develop a phenomenological
understanding of the mechanisms controlling fibre fabrication, thereby reducing the
effort and cost in the most expensive part of fibre fabrication – preform preparation.

The drawing of conventional (solid) optical fibre has been studied extensively
(Matovich & Pearson 1969; Shah & Pearson 1972; Paek & Bunk 1978; Schultz &
Davis 1982; Choudhury & Jaluria 1998; Yin & Jaluria 2000; Cheng & Jaluria
2002). The flow in this process is typically axisymmetric and steady. Thus the
axisymmetric Navier–Stokes equations and free-boundary conditions were taken as a
starting point in the analysis. Considerable mathematical simplication can be made
to the axisymmetric problem by utilizing the slenderness in the geometry, which is
characterized by ε, defined by the inverse ratio of a typical cross-sectional dimension
to the length. When ε is small (O(10−3) for a typical optical fibre draw down process),
expansion of the governing equations in terms of powers of ε leads to a greatly
simplified model (see Matovich & Pearson 1969; Schultz & Davis 1982). Dewynne,
Ockendon & Wilmott (1992) and Dewynne, Ockendon & Wilmott (1994) derived the
equations governing the evolution of slender viscous fibres with non-axisymmetric
solid cross-sections using systematic asymptotic methods. These studies were limited
to cases where the cross-section evolves in a self-similar manner while undergoing
translation, rotation and affine scaling in size, thus limiting the analysis to cases
when the capillary number is large. More recently, Cummings & Howell (1999) have
extended these models to predict the evolution of non-axisymmetric solid fibres for
small capillary numbers. They have used a similar asymptotic approach to derive
the governing equations, boundary conditions and kinematic conditions and have
partially decoupled the axial deformation (stretching) from the in-plane deformations
(sintering). They have then used a complex variable approach coupled with conformal
mapping to arrive at a set of explicit solutions for a wide variety of geometries.

However, there are not many studies concerning the drawing of fibres with cross-
section containing holes. The drawing of thin-walled capillaries was modelled by a
few researchers Yarin, Gospodinov & Roussinov 1994; Gospodinov & Yarin 1997;
Sarboh, Milinkovic & Debeljkovic 1998. Recently, Fitt et al. (2001, 2002) developed an
axisymmetric model to investigate the drawing of glass capillaries, laying a foundation
to analysing simple microstructured fibre drawing. They used an asymptotic analysis
(with a leading-order analysis similar to that of Dewynne et al.) to arrive at a
closed-form expression to determine neck-down shape and velocity profiles as a
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function of the different parameters. Fitt et al. (2001, 2002) validated their model
with experiments, and the results indicate that the predictions from the model were
remarkably accurate. In Fitt’s model, glass was modelled as a Newtonian fluid, and the
ratio of viscosity to surface tension was adjusted to fit the theoretical results to the ex-
perimental data. The assumption of axisymmetry in the model has precluded the
consideration of multiple-holed structures. More recently, Xue et al. (2005a , b, 2006)
have used the finite-element method to analyse drawing of microstructured optical
fibres. In a series of papers, they have analysed transient drawing, steady state drawing
and the effect of material properties on the drawing of PCFs.

In this study, we consider a multiple-holed structure, non-dimensionalize the
Navier–Stokes equations and arrive at a leading-order set of equations. In § 2, we
extend the approach of Cummings & Howell (1999) to include multiply connected
geometries. We also show that the evolution of the shape of the cross-section decouples
into a plane Stokes flow problem with surface tension/pressure-driven boundaries
coupled with a kinematic condition that governs the out-of-plane evolution. It should
be pointed out that the shape of the cross-section is not known in advance and
we have to solve the free-boundary problem to determine its evolution. This study
will focus on geometries that are symmetric such that the centre of mass of each
cross-section is fixed and does not move when the cross-section evolves and that no
intial translation and twist have been applied to the fibre. We then use the complex
variable approach to derive an integral equation that is used to solve the Stokes
flow problem in the plane in § 3. The numerical scheme employed to determine the
evolution of the cross-secion is discussed in § 4. In § 5, we show that for a trivial case
of the drawing of an annular tube (capillary), the solution is essentially identical to
that obtained by Fitt et al. (2002), and then present some sample numerical solutions
to illustrate the effects of surface tension, inertia, gravity and to show that the model
is capable of predicting hole collapse. In § 6, we present the technique to extend
the numerical solution to non-isothermal drawing in which there is only an axial
temperature distribution. Our conclusions and discussion of the implications of the
numerical method to practical applications are given in § 7.

2. Mathematical Modelling
We consider the flow of a viscous jet or fibre, the geometry of which is schematically

represented in figure 1. In modelling the problem, we employ a procedure similar to
those of Dewynne et al. (1994) and Cummings & Howell (1999) to obtain the
equations governing the evolution of the cross-section. We assume that the fibre is
an incompressible Newtonian viscous fluid that is isothermal during the draw down
process. The fluid flow is thus governed by the three-dimensional incompressible
Navier–Stokes equations,

∇ · u = 0, (2.1a)

ρ[ut + u · ∇u] = −∇p + μ∇2u + F, (2.1b)

where, u = {u, v, w} is the velocity vector, F is the body force vector, μ is the constant
dynamic viscosity, ρ is the constant density, p is the pressure, and the subscript t

indicates differentiation with respect to time. We assume that there are M + 1 free
surfaces in the fibre, each of which can be given by Gα(x, y, z) = 0, α = 0 . . . M , where
α = 0 denotes the outer bounding surface. We denote all the in-plane contours of
the surfaces Gα = 0 by ∂Gα , the in-plane domain by D and the sum of the in plane
contours by ∂G. Since each free surface is a streamline, the free-surface conditions
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Figure 1. Schematisc of fibre drawing and the cross-sections: (a) schematic showing geometry
and coordinate system for fibre drawing; and (b) schematic representation of geomatery
showing the numbering of the different holes.

can be described by M + 1 kinematic conditions,

Gα
t + u · ∇Gα = 0 on Gα(x, y, z) = 0. (2.2)

It is assumed that these are surface tension and/or pressure-driven boundary
problems. The free surface stress boundary conditions can be given by

σ · ∇Gα = −γ κα∇Gα + P α∇Gα on Gα(x, y, z) = 0, (2.3)

where γ is the coefficient of surface tension, κα is the mean curvature of the interface,
P α is the magnitude of the internal pressurization on each surface, and σ is the stress
tensor, the components of which are given by

σij = −pδij + μ

(
∂ui

∂xj

+
∂uj

∂xi

)
,

where δij is the Kronecker delta, and i, j = 1 . . . 3. For steady-state drawing, the
problem is closed by specifying the initial shape and the velocities at the ends of the
fibre,

w = Uf at z = 0, u = Ud at z = L.

The problem can also be closed by prescribing a force at one end of the fibre and the
shape and velocity at the other end. Let the largest typical dimension in the plane
be [a], for example the radius of the outer surface of the fibre. Now, we can define
a parameter ε = [a]/L, where L is a typical draw length. For typical optical fibre
drawing conditions, [a] � L, such that ε � 1. We will assume, henceforth, that ε is
the small parameter in the problem. We non-dimensionalize and scale the problem
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with

q = U (εū, εv̄, w̄), x = L(εx̄, εȳ, z̄),

p =
μU

L
p̄, t =

L

U
t̄, G(x, y, z, t) = Ḡ(x̄, ȳ, z̄),

κ =
1

εL
κ̄,

where U is a typical speed at which the fibre is drawn. In applying the following
scaling, it is implicitly assumed that the fibre is nearly straight, the curvature of the
centreline is small, and gravity is acting vertically along the axis. Non-dimensionalizing
(2.1), we get

ūx̄ + v̄ȳ + w̄z̄ = 0, (2.4a)

ε2Re(ūt̄ + ūūx̄ + v̄ūȳ + w̄ūz̄) = −p̄x̄ + ūx̄x̄ + ūȳȳ + ε2ūz̄z̄, (2.4b)

ε2Re(v̄t̄ + ūv̄x̄ + v̄v̄ȳ + w̄v̄z̄) = −p̄ȳ + v̄x̄x̄ + v̄ȳȳ + ε2v̄z̄z̄, (2.4c)

ε2Re(w̄t̄ + ūw̄x̄ + v̄w̄ȳ + w̄w̄z̄) = −ε2p̄z̄ + w̄x̄x̄ + w̄ȳȳ + ε2w̄z̄z̄ + ε2St . (2.4d)

The non-dimensional boundary conditions are

(−p̄ + 2ūx̄)Ḡ
α
x̄ + (ūȳ + v̄x̄)Ḡ

α
ȳ + (ε2ūz̄ + w̄x̄)Ḡ

α
z̄ = (−γ̄ κ̄α + P̄ α)Ḡα

x̄ , (2.5a)

(v̄x̄ + ūȳ)Ḡ
α
x̄ + (−p̄ + 2v̄ȳ)Ḡ

α
ȳ + (ε2v̄z̄ + w̄ȳ)Ḡ

α
z̄ = (−γ̄ κ̄α + P̄ α)Ḡα

ȳ , (2.5b)

(w̄x̄ + ε2ūz̄)Ḡ
α
x̄ + (w̄ȳ + ε2v̄z̄)Ḡ

α
ȳ + ε2(−p̄ + 2w̄z̄)Ḡ

α
z̄ = ε2(−γ̄ κ̄α + P̄ α)Ḡα

z̄ . (2.5c)

The non-dimensional kinematic conditions are

Ḡα
t̄ + ūḠα

x̄ + v̄Ḡα
ȳ + w̄Ḡα

z̄ = 0 Ḡα = 0 (2.6)

where

Re =
ρUL

μ
, St =

ρgL2

μU
, γ̄ =

1

εCa
, Ca =

μU

γ
,

are the Reynolds number, Froude number and the capillary number, respectively.

2.1. Orders of magnitude of terms in the equations

We assume that Re and St are O(1) in all the following derivations, and we further
assume that the capillary number Ca = O(ε−1), such that the non-dimensional surfae
tension coefficient γ̄ = 1/εCa =O(1). Finally, we assume that the non-dimensional
internal pressure is O(ε−2). Without loss of generality, it can be assumed that the
pressure on the outer bounding surface is 0 and the pressure on the holes is equal
to the difference between the pressure on the holes and the outer surface (hole
overpressure). This scaling suggests that unless the hole overpressure is within O(ε2)
of the ambient pressure, the holes would explode. These dimensionless numbers are
chosen such that in the leading-order model, there is a balance between all the desired
effects of viscosity inertia, gravity, surface tension and internal pressurizaiton. Thus
the leading-order model obtained is the most general and applicable to a wide variety
of flows where the geometry is slender. Thus, in summary, the entire problem is
characterized by the following scaling of the dimensionless parameters:

Re = O(1), St = O(1), Ca = O(ε−1), P̄ α = O(ε−2). (2.7)

The nature of the different physical effects can be now determined, and the
correct leading-order equations can be easily determined by letting the appropriate
dimensionless quantity tend to 0.
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2.2. Asymptotic analysis

Our analysis is based on expansions of each of the scaled dependent variables ū, v̄,
w̄, p̄, Ḡα , κ̄α , P̄ α as the regular asymptotic series in even powers of ε, for example,
ū= ū0+ε2ū1+O(ε4) . . .. Substituting the expansions in (2.4) and dropping the overbars,
we obtain the leading-order non-dimensional governing equations to be

u0x + v0y + w0z = 0, (2.8a)

u0xx + u0yy = −p0x, (2.8b)

v0xx + v0yy = −p0y, (2.8c)

w0xx + w0yy = 0. (2.8d)

The leading-order boundary conditions become

(−p0x + 2u0x)G
α
0 x + (u0y + v0x)G

α
0 y + w0xG

α
0 z =

(
− γ κα

0 + P α
0

)
Gα

0 x, (2.9a)

(v0x + u0y)G
α
0 x + (−p0y + 2v0x)G

α
0 y + w0yG

α
0 z =

(
− γ κα

0 + P α
0

)
Gα

0 y, (2.9b)

w0xG
α
0 x + w0yG

α
0 y = 0. (2.9c)

The leading-order kinematic condition at each surface i is

Gα
0 t + u0G

α
0 x + v0G

α
0 y + w0G

α
0 z = 0 on Gα

0 = 0. (2.10)

The leading-order axial velocity w0 now satisfies (2.8d) along with the boundary
conditions (2.9c). This represents a homogeneous Neumann problem which implies
that w0 is independent of x and y. This can be restated as

w0 = w0(z, t). (2.11)

Equations (2.9) and (2.10) are exactly the same as in Dewynne et al. (1992) and
Cummings & Howell (1999), except that we have conditions for each bounding
surface. We can integrate the leading-order kinematic conditons (2.10) around the
contour to get ∮

∂G

(
Gα

0t + u0G
α
0 x + v0G

α
0 y + w0G

α
0 z

) ds

|∇sG
i
0| = 0. (2.12)

Applying the divergence theorem to (2.12) and (2.9c) and a form of Reynolds
transport theorem introduced by Dewynne et al. (1994), we obtain

At + (w0A)z = 0, (2.13)

which represents the global conservation of mass, where A is the total cross-sectional
area.

2.3. Equations for the case with no surface tension

We start the simplification process by considering the case when the surface tension
is 0. The leading-order boundary conditions (2.9) reduce to

(−p0x + 2u0x)G
α
0 x + (u0y + v0x)G

α
0 y + w0xG

α
0 z = 0 on Gα

0 = 0, (2.14a)

(v0x + u0y)G
α
0 x(−p0y + 2v0x)G

α
0 y + w0yG

α
0 z = 0 on Gα

0 = 0, (2.14b)

w0xG
α
0 x + w0yG

α
0 y = 0 on Gα

0 = 0. (2.14c)

The general solution to the leading-order cross-flow problem was found by Dewynne
et al. (1994). We adopt the ZST notation to denote the solution for the leading-order
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zero-surface-tension problem (see Cummings & Howell 1999):

uZST = x∗
t + w0x

∗
z − (x − x∗)

2
w0z + c(z, t)(y − y∗), (2.15a)

vZST = y∗
t + w0y

∗
z − (y − y∗)

2
w0z + c(z, t)(x − x∗), (2.15b)

pZST = −w0z, (2.15c)

where x∗, y∗ represent the centre line of the fibre (line joining the centroid of each
cross-section), and c(z, t) represents the rotation in the (x, y) plane. The velocities
are not unique because, the solution to the stress boundary value problem can be
determined only up to an arbitrary rotation (a(z, t)) and rigid body translation (b(z, t)
and c(z, t)). From the form of (2.13) and (2.15) and with the argument from Dewynne
et al. (1994), we can deduce that the cross-section of the fibre maintains its shape
as it evolves. In general, the cross-section can translate, rotate and undergo affine
size scaling as it evolves. For the problem of steady-state drawing of microstructured
fibres, we limit our attention to cases when the inital velocity has only an axial
component. For non-zero surface tension, (2.15) is no longer a solution because the
lateral force imparted by the presence of surface-tension does not permit self-similar
evolution.

2.4. Case with surface tension

When the surface tension is non-zero, we begin by rewriting (2.8b) and (2.8c) in
terms of a stress function U such that U satisfies the biharmonic equation for the
leading-order cross-flow problem. The problem can now be written in terms of U as

∇4
sU = 0, in S, (2.16a)

U = 0,
∂U

∂ns
α

+ γ̄ = C α · ns
α on ∂Gα = 0, (2.16b)

where ns
α is the normal vector C α is a constant vector. The calculation of C α will

be discussed in § 3.1. The boundary value problem has to be solved for U at each
time step as the cross-section evolves according to the kinematic conditions (2.10). If
Gα are given, then U can be obtained uniquely. However, it is well known that for a
stress booundary value problem, the cross-flow velocity gradients and pressure given
by

p0 = −1

2
(Uxx + Uyy), (2.17a)

u0x =
1

4
(Uyy − Uxx) − 1

2
w0z, (2.17b)

v0y =
1

4
(Uxx − Uyy) − 1

2
w0z, (2.17c)

do not determine the velocity components uniquely. An arbitrary rigid body motion
can be added to the flow without changing the stress state. To determine the velocities
uniquely and predict the evolution of the cross-section, we proceed to higher-order
equations and find an equation for the axial stress balance of the fibre. In general,
U has to be solved at every time step as the cross-section evolves to determine the
evolution of the cross-section.
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The first-order axial problem can be obtained from O(ε2) terms in (2.4) and (2.5).
They are

w1xx + w1yy = ∇2
sw1 = Re(w0t − wowoz) + p0z − w0zz − St in A, (2.18a)

w1xG
α
0x + w1yG

α
0y =

∂w1

∂ns
α

= Gα
0z

(
p0 − 2w0z − γ̄ κα

0

)
− Gα

0xu0z − Gα
0yv0z onGα

0 = 0.

(2.18b)

Integrating (2.18a) and applying the divergence theorem, we get

∫ ∫
D

∇2w1dA =

∮
∂G

∂w1

∂ns
ds =

M∑
α=0

∮
∂Gα

w1 · ns
αds. (2.19)

After some involved manipulations to evaluate the integrals in (2.19), we can arrive
at the axial stress balance equation (similar to 3.11 in Cummings & Howell 1999)

(3Aw0z)z = ReA(w0t + wowoz) − St − 1

2
γ̄ Γz −

M∑
α=1

1

2

∮
∂Gα

C α · ns
αds, (2.20)

where A=
∫ ∫

D
dxdy =

∫ ∫
A0 dxdy−

∑
Aα

∫ ∫
Aα dxdy and Γ =

∑M

α = 0

∮
∂Gα ds. Equation

(2.20) may be integrated to give

3Aw0z = Fd +

∫
ReA(w0t + wowoz) − StA − 1

2
γ̄ Γ −

∫ M∑
α=1

1

2

∮
∂Gα

C α · ns
αds. (2.21)

In 2.21, Fd is the non-dimensional draw tension and is defined as

Fd =
Fd

μULε2
, (2.22)

where Fd is the applied draw tension. In summary, using the results in the literature,
we have arrived at a system of equations, (2.13) and (2.20) for w0, A and Γ of the
microstructured fibre. When using these equations for a solid fibre, we can recover
the closed system of equations of Cummings & Howell (1999). Also, in the limit when
the surface tension goes to 0, the fibre maintains its shape as it evolves. However, for
complicated geometries, the relationship between the areas and the circumference is
not known. For cross-sections containing holes (multiply connected), these equations
have no information about the evolution of each of the different surfaces (Gα = 0).
Also, in general, if the cross-section has no symmetry, the centre of mass of each
cross-section will not be fixed as the fibre evolves. Thus, to make further progress,
we need to determine the lateral translation and twist of the fibre from the first-
order cross-flow equations and boundary conditions. Integration of the first-order
cross-flow equations gives the lateral-force balance, and elimination of the velocities
and the pressures gives us equations relating the first-order perturbation to the mean
curvature of the free surface (κ1), the shape of the cross-section, the surface tension
and the leading-order axial velocity. These equations are not derived here, but the
derivation is almost identical to that of Cummings & Howell (1999 p. 369, 3.13–3.15).
It is worth pointing out that since these integrals involve the first-order curvature, the
general solution to the problem is complicated and we do not attempt to solve for the
lateral translation and twist. In this study, we will limit our attention to geometries
that are symmetric, such that the centre of mass of each cross-section is fixed and
does not move when the cross-section evolves and that no initial translation and twist



Evolution of slender fibre with holes in the cross-section 163

have been applied on the fibre. Before we proceed, it is worth noting that the form
of (2.21) is not changed by the inclusion of internal pressurization in our equations.

3. Complex variable approach
We can transform the problem into a modified version of the purely two-dimensional

(problem studied by Tanveer & Vasconcelos (1994, 1995). A very similar methodology
was used by Cummings & Howell (1999) and Howell & Siegel (2004). We will first
solve the leading-order cross-flow problem (2.17) and use the solution to derive
equations for the evolution of the cross-section. Throughout this section, we drop the
suffices on the the leading-order variables. We first subtract the zero-surface-tension
homogeneous solution by setting

p = pZST + p̃, u = uZST + ũ, v = vZST + ṽ.

Due to the definitions above, the cross-section has no net linear or angular
momentum with respect to ũ and ṽ, and they satisfy∫ ∫

A

(
ũ

ṽ

)
dx dy = 0, (3.1a)

∫ ∫
A

((x − x∗)ṽ − (y − y∗)ũ) dx dy = 0. (3.1b)

In terms of the new variables, the leading-order cross-flow problem becomes

ũx + ṽy = 0, (3.2a)

ũxx + ũyy = p̃x, (3.2b)

ṽxx + ṽyy = p̃y, (3.2c)

(−p̃x + 2ũx)x + (ũy + ṽx)y = (−γ κα + P α)x on Gα = 0, (3.2d)

(ṽx + ũy)x + (−p̃y + 2ṽx)y = (−γ κα + P α)x on Gα = 0. (3.2e)

Equation (3.2) is the same as the problem of two-dimensional Stokes flow with a
surface tension-driven boundary. The evolution of the cross-section is determined by
the kinematic condition:

Gα
t + ũGα

x + ṽGα
y = −wGα

z +
1

2
wz((x − x∗)Gα

x + (y − y∗)Gα
y )

+ (x∗
t + wx∗

z )G
α
x − (y∗

t + wy∗
z )G

α
y on Gα = 0. (3.3)

Equation (3.3) is the same as (4.3), p. 371, of Cummings & Howell (1999), except
for the superscripts accounting for each of the free surfaces. The right-hand side
of (3.3) for a classical two-dimensional Stokes flow problem is 0. The extra terms
account for flow from a cross-section upstream to a cross-section downstream as can
be seen from the terms involving the axial velocity and for translation and rotation
of the cross-section. As mentioned earlier, we will limit our attention to symmetric
systems in which the centreline of the fibre remains fixed. We choose it such that the
centreline lies on the z-axis so that(

x∗

y∗

)
=

∫ ∫
A

(
x

y

)
dx dy =

(
0

0

)
. (3.4)
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Using (3.4), the kinematic condition (3.3) can be modified to

Gα
t + ũGα

x + ṽGα
y = −wGα

z +
1

2
wz

(
xGα

x + yGα
y

)
on Gα = 0. (3.5)

Since we have reduced the problem to a Stokes flow problem with surface tension-
driven boundaries coupled with a modified kinematic condition, methods applicable
to multiply-connected stokes flow problems can be used to solve the leading-order
cross-flow probem. Hopper (1990) and Richardson (1992) have shown that exact
solutions to the plane Stokes flow problem for a simply connected region (right-
hand side of (3.3) being indentically 0) may be found in terms of a time-dependent
conformal map from a unit circular disc onto the cross-section. Cummings & Howell
(1999) then extended these ideas to the problem of evolution of a non-axisymmetric
slender jet. Tanveer & Crowdy (1998) and Richardson (2000) have independently
found a class of exact conformal mapping solutions to the plane Stokes flow problem
for the case of doubly connected fluid regions. For domains with higher connectivity,
Vorst (1993) has obtained a numerical solution based on a boundary element method
and has proposed a class of exact solutions for the plane Stokes flow problem. In this
section, we adapt ideas from the literature and adapt them to provide a boundary
integral-based numerical solution to our problem.

We start by defining a stream function ψ such that the velocity components can be
written as

ũ = ψy, ṽ = ψx.

From (3.2a), (3.2b) and (3.2c), ψ must satisfy the biharmonic equation and can,
therefore, be expressed as

ψ = −�[Z̄ φ(Z ) + χ(Z )], (3.6)

where, the Goursat functions φ(Z ) and χ(Z ) are analytic everywhere in the fluid
region D(z, t); Z = x + iy is the complex variable. All the physical quantities can be
written in terms of these functions:

ũ + iṽ = φ(Z ) − Z φ′(Z ) − χ ′(Z ), (3.7a)

σ̃x + σ̃y = p̃ = −4Re[φ′(Z )]. (3.7b)

The stress boundary conditions of (3.2d) and (3.2e) can be combined to give

φ(Z ) + Z φ′(Z ) + χ ′(Z ) = i
γ̄

2
Zs − P αZ + C α on Gα = 0, (3.8)

where the primes indicate differentiation with respect to Z , the subscript s stands
for differentiation with respect to the arc length, and C α are constants of integration
and the same as the constants defined in (2.16b). Thus, the problem is reduced to
determining the analytic functions φ(Z ) and χ ′(Z ). At each instance of time and
axial location, the domain and the boundary conditions determine φ(Z ), χ ′(Z ) and
the constants C α . In general, the constants C α are different, are not known a priori
and must be determined as part of the solution process. However, without loss of
generality, it can be assumed that C 0 = 0. The calculation of C α will be discussed in
§ 3.1. The kinematic condition can also be converted to complex variable notation as:

Im

[(
ũ + iṽ − Zt + wZz − 1

2
wzZ

)
Zs

]
= 0 on Gα = 0 (3.9)

Using (3.9) along with (3.7a) we obtain the kinematic condition in terms of the
analytic function φ(Z ) as :
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Im

[(
2φ(Z ) − Zt − i

γ̄

2
Zs + P αZ + wZz − 1

2
wzZ

)
Zs

]
= 0 on Gα = 0 (3.10)

Equation (3.10) combined with combined with (2.13) and (2.20) determines the
evolution of the cross-section, once φ(Z ) is known. The general solution procedure
is to determine φ(Z ) for a given domain D(z, t) and solve (3.10), (2.13) and (2.20)
to obtain the cross-section at the next time step. We use the Sherman–Lauricella
(S–L) integral equation to determine the analytic functions φ and χ ′ that govern the
evolution of the cross-section.

3.1. Sherman–Lauricella integral equation

To find the analytic functions that satisfy the stress boundary value problem of (3.8),
the S–L (see Muskhelishvili 1963b) equation is derived by letting φ(Z ) and χ ′(Z )
take the form

φ(Z ) =
1

2πi

∮
∂G

ω(η)

η − Z
dη +

M∑
α=1

bα

Z − Zα

, (3.11a)

χ ′(Z ) =
1

2πi

∮
∂G

ω(η)dt + ω(η)dη

η − Z
− 1

2πi

∮
∂G

η̄ω(η)

(η − Z )2
dt +

M∑
α=1

bα

Z − Zα

. (3.11b)

By letting Z tend to a point to on one of the contours, we can obtain the S–L
integral equation:

ω(to) +
1

2πi

∮
∂G

ω(η)d log

(
η − to

η̄ − t̄o

)
− 1

2πi

∮
∂G

ω(η)d
η − to

η̄ − t̄o

+

M∑
α=0

bα

t − Zα

+
bα

t̄o − Zα

(
1 − to

t̄o − Zα

)
− C α = g(to). (3.12)

where ω(η) is the density function, which is defined in (3.11), bα = i
∫

∂Gα ω(η)dη̄ −
ω(η)dη,α = 1 . . . M are real constants, Zα are arbitrary points inside each domain,
and Z0 is chosen such that it lies in D, C α =

∫
Lα

ω(η)dη are the arbitrary constants in
(3.8) and g(to) is equal to the right-hand side of (3.8) evaluated at a boundary
point to. Although C α are not known a priori, they can be replaced by the
integrals C α =

∫
∂Gα ω(η)dη and determined during the solution of the S–L integral

equation (Muskhelishvili 1963b; Lu 1995). The addition of imaginary constant
b0 = i

∫
∂G

((ω(η))/(η − Z0) dη − (ω(η))/(η̄ − Z̄0)) dη̄ serves to convert the S–L equation
into a pair of Fredholm equations of the second kind for the real and imaginary
parts of ω(η). It can be proved that b0 = 0 is a necessary condition for the existence
of a solution to the S–L equation. Readers are refered to Muskhelishvili (1963b,a) for
further details. The S–L equation is particularly attractive for solution because the
kernels are continuous along each component of the boundary, it is readily extensible
to domains that are multiply-connected, and recent advancement into numerical
methods has shown that the S–L equation can be solved in O(N) (where N is the
number of points used in discretizing the boundary) operations for large problems
using the Fast Multipole Method (FMM). This renders the solution of this form
particularly useful in solving moving boundary value problems. This approach has
been used by Crowdy (2002) to solve for the viscous sintering in multiply connected
domains. The equation listed above is the general form of the S–L equation. Although
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the numerical solution to the problem can be obtained, the problem size and the
complexity can be considerably reduced by the use of symmetry. As mentioned
earlier, only problems with cyclic symmetry are studied here and the S–L equation is
modified to reflect this symmetry.

3.2. Cyclic symmetry

For problems possessing cyclic symmetry, the domain and the boundary conditions
are invariant when the domain is rotated by an angle θ = 2π

n
(n � 2 is an integer)

about the origin. Such a domain is characterized by an outer bounding contour,
possibly an inner bounding contour and possibly m holes (closed contours, m < M)
in each basic region. The properties of the complex stress function and the modified
version of the S–L equation are presented here. Consider the transformation Z �−→ z

such that z=Z eiθ corresponding to a rotation of θ about the origin. Invariance of
the stress and the velocity fields due to rotation of θ implies from (3.7) that

φ(z) = eiθφ(Z ), (3.13a)

χ ′(z) = e−iθχ ′(Z ), (3.13b)

φ′(z) = φ′(Z ). (3.13c)

Following Mikhailov (1979), we shall ignore the second term of (3.12) so that the
density function ω(to) possesses the same symmetry of φ(Z ) and the subsequent
derivation of the modified integral equation poses no difficulties. Thus, it is relatively
simple to prove that the symmetry conditions of (3.13) will hold if

ω(ηeiθ ) = eiθω(η). (3.14)

Let ∂Gp0, p =0 . . . m, represent the contours of Gα , α = 0 . . .M , lying within the
angle 0 � θ � 2π/n, and let ∂G00and ∂Gm0 represent the outer and inner bounding
contours, respectively. Let ∂Gpk represent the contour obtained by rotating ∂Gp0 by
an angle θk = 2πk/n, k = 0 . . . n − 1. Using (3.13) and (3.14), we can rewrite the S–L
equation in the form

ω(to) +
1

2πi

n−1∑
k=0

m∑
p=0

{∫
∂Gpk

ω(η) dlog

(
η − to

η̄ − t̄o

)
−

∫
∂Gpk

ω(η)d
η − to

η̄ − t̄o

}

+ i

n−1∑
k=0

m∑
p=0

∫
∂Gpk

ω(η)dη̄ − ω(η)dη

to − Zpk

− C l0 = g(to), to ∈ ∂Gl0. (3.15)

where Zpk is the point Zα in (3.12), and by definition Zpk = eiθkZp0. Introducing
a change of variables τ = ηe−iθk , we have for η ∈ ∂Gpk , ω(η) = ω(τ )eiθk , thereby
transforming ∂Gpk into ∂Gp0. Denote ∂G as the sum of all contours ∂Gp0 (3.15) can
be written as

ω(to) +
1

2πi

n−1∑
k=0

{∫
∂G

ω(η)eiθkdlog

(
ηeiθk − to

η̄e−iθk − t̄o

)
−

∫
∂G

ω(η)eiθkd
ηeiθk − to

η̄e−iθk − t̄o

}

+ i

n−1∑
k=0

∫
∂G

ω(η)dη̄ − ω(η)dη

to − Zp0e−iθk

− C l0 = g(to), to ∈ ∂Gl0, (3.16)
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where C l0 =
∫

∂Gl0 ω(η)ds, C 0 = 0 and C m = 0 from symmetry. Finally, using (3.13) in
(3.8), we can obtain

C lk = eiθkC l0, k > 0. (3.17)

Substituting (3.17) in (2.20), the last integral can now be written as

m∑
p=0

n−1∑
k=0

∫
∂Gpk

eiθkC p0 · ns ds.

However,
∑n−1

k=0 eiθk = 0; therefore, (2.20) for rotationally symmetric systems is

(3Aw0z)z = ReA(w0t + wowoz) − StA − 1

2
γ̄ Γz. (3.18)

An additional term similar to b0 in (3.12) has to be added to (3.16) in order to
make it uniquely solvable. The kernels for the symmetric version of the S–L equation
are also smooth and can be evluated using the same procedure.

4. Numerical procedure
The numerical procedure to solve for the evolution of microstructured fibre is as

follows. For a given initial geometry, the analytic funciton φ(Z ) is determined by
solving the S–L equation (3.12). We follow the formulation of Greengard, Kropinski
& Mayo (1996) to solve the S–L equation. The formulation uses a set of Nα points,
equally spaced with respect to some parametrization arc length (s in the present
context), on each contour of ∂Dα . The S–L equation is discretized using the Nystrom
method based on the trapezoidal rule since it achieves superalgebraic convergence
for smooth data. The result of the discretization is a system of 2N linear equations
of the form

Hω = g. (4.1)

where H is a 2N × 2N full matrix, ω is the vector of density functions at each of
the discretization points, and g represents the discretized vector of the right-hand
side of the S–L equation. Greengard et al. (1996) use the FMM combined with
the Generalized Minimum Residual Method (GMRES)-iterative solver to solve the
matrix equaitons in (4.1) to the find the unknown density function vector ω in O(N)
operations. In the current application, we use either direct inversion using Gaussian
Elimination or the GMRES-iterative method without fast multipole acceleration to
demonstrate the capability in modelling the complex three-dimensional evolution of
the fibre. For problems involving a large number of holes, the FMM combined with
the GMRES-iterative solver requiring O(N) operations can be used to solve the
matrix equations in 4.1 to find the unknown density function ω (Greengard et al.
1996). Once the density function ω(t) is determined, (3.11) is used to determine φ(Zk),
k = 1 . . . N × M at each of the boundary points.

Once the analytic function φ(Zk) is determined, (2.13), (2.20) and (3.10) now need
to be solved to determine the evolution of the current cross-section. These equations
now represent a set of 2N coupled ordinary differential equations (ODEs) governing
the evolution of each of the N boundary points. In this paper, we are interested only
in the steady-state evolution of the cross-section of the fibres, although the numerical
method presented here can be easily adapted to study the unsteady (transient)
evolution of the fibres. Provided the draw force (Fd) is given, or if we have good
estimate of the axial velocity derivative (wz(z = 0)) at the start, an explicit method
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can be used to determine the evolution of the fibre. In our formulation, we use a
fourth-order explicit Runge–Kutta method with adaptive time stepping (where the
time steps correspond to steps along the axial direction) to solve the set of ODEs.

After every iteration (time step), a piecewise cubic spline is fit through the newly
obtained boundary points to determine the first derivative and the second derivative
(curvature κ) of the boundary with respect to the arc lengh (s), since the solution of
the S–L equation relies on the availability of these quantities. A general algorithm
was developd to redistribute the boundary points along the boundary of each contour
based on the equidistribution pricinple (see Thompson 1985), where any non-uniform
point distribution can be considered to be a transformation, x(ζ ), from a uniform
grid in ζ -space. This process is accomplished using a weight function β(ζ ) that
satisfies

∂x

∂ζ
β(ζ ) = constant. (4.2)

The equidistribution is accomplished by solving the Euler equation for the
minimization of the integral

I =

∫
β(ζ )x2

ζ dζ. (4.3)

After every iteration, the boundary points are redistributed such that the arc length
between successive boundary points is equal so that the trapezoidal rule or any
higher-order Newton–Cotes type of formula for equally spaced points can be used
to perform the integrations necessary when solving the S–L equation. If a change
in connectivity caused by complete collapse of small holes occurs, as defined when
the ratio of the current area of the hole to its original area is less than 10−8,
this can be handled by simply removing this boundary from the cross-section and
solving (4.1) once again. Due to small numerical errors in the piecewise cubic spline
fitting, we observe oscillations in the derivatives even if the points have deviated
minimally from a smooth curve. Least-squares b-spline smoothing is performed
after every five iterations to avoid such oscillations. The boundary points are then
redistributed according to the curvature (closer in regions of high curvature) using
a general adaptive remeshing algorithm. The redistribution, spline interpolation and
computation of the first derivative and curvature can all be accomplished in O(N)
operations, thus not being a significant bottleneck to the computations.

5. Results and discussion
In this section, we show the numerical results for the steady state evolution of the

microstructured fibres, using the integral equation formulation described in § 4. We
simulate a number of example geometries to show the applicability of the method to
practical problems involving the manufacturing of optical fibres that contain holes in
the cross-section. From the governing equations, it is obvious that the stretching and
the sintering processes are weakly coupled at best and possibly completely uncoupled
from each other. We then examine the effect of the different parameters such as feed
speed, draw force, draw speed, surface tension coefficient and the viscosity (and as
a consequence temperature) on the evolution of the microstructure as it evolves. We
will show that in the small surface tension limit, the surface tension effects are limited
to a particular length during the drawing, beyond which the microstructure will
evolve in an almost self-similar manner. We will also demonstrate that our method
is capable of capturing the collapse of small holes and to continue simulating the
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drawing process beyond the collapse of some of these holes. Finally, we will examine
the effects of internal pressurization to show that, in some cases, the holes can start
expanding and cause explosion and destruction of the fibre geometry. All simulations
were performed on a single Intel Itanium 2 GHz processor with 1 GB RAM. Since
the total mass should always be conserved, the velocity multiplied by the area at each
iteration should be a constant. The maximum error of this quantity was always less
than 0.5 % for all iterations and simulations. The most involved simulation on four
holes using the GMRES-iterative solver with 1000 boundary points (125 boundary
points for each hole and 500 boundary points for the outer surface) requires 1 minute
per time step for a total of 6000 steps. The number of operations for GMRES without
fast multipole acceleration scales with O(N2), where N is the number of boundary
points. If one is interested in simulating a large number of holes, GMRES with
fast multipole acceleration (Greengard et al. 1996) is recommended since it scales as
O(N); direct inversion by Gaussian Elimination is not recommended since it scales
with O(N3).

5.1. Validation of numerical solution (drawing of a capillary)

The first example under consideration is the evolution of an annular cylinder, the
cross-section of which is a circular disk with a circular hole located at the centre of
the disk (origin). We will first show that the current methodology yields the same
governing equations obtained by Fitt et al. (2002). Secondly, we will compare the
numerical solution to the analytical perturbation solution of Fitt et al. (2002) under
the small surface tension limit. This example will serve to demonstrate the accuracy
and the speed of the method. We denote Ro(z) and Ri(z) as the outer and inner
radii of the cylinder during the drawing process, and pi as the overpressure on the
inner cylinder. The solution for a circular annulus subjected to internal and external
pressures can be found from the plane theory of elasticity; an accessible proof of this
result can be found in Muskhelishvili (1963b). For the problem under consideration
(surface tension and internal pressurization), this result can be modified to

φ(Z ) =
−γ (Ro + Ri)

2
(
R2

o − R2
i

) Z +
piR

2
i

2
(
R2

o − R2
i

)Z , (5.1a)

χ ′(Z ) =

{
−γ (Ri + Ro)RiRo(

R2
o − R2

i

) +
piR

2
oR

2
i(

R2
o − R2

i

)
}

1

Z
, (5.1b)

Substituting for φ,χ ′ from (5.1), A= π(R2
o − R2

i ) and Γ = 2π(Ro + Ri) into (3.7a),
(3.9) and (2.20), we obtain

(
R2

i w0

)
z
=

piR
2
i R

2
o − γRiR2(Ri + Ro)

μ
(
R2

o − R2
i

) , (5.2a)

(
R2

ow0

)
z
=

piR
2
i R

2
o − γRiR2(Ri + Ro)

μ
(
R2

o − R2
i

) , (5.2b)

ρ
(
R2

o − R2
i

)
[w0w0z − g] =

[
3μ

(
R2

o − R2
i

)
w0z + γ (R0 + Ri)

]
z
. (5.2c)

Equation (5.2) are identical to the steady-state version of (19) – (21) of Fitt et al.
(2002). Under the small surface tension limit with no inertial and gravitational effects,
Fitt et al. (2002) used a perturbation solution to solve (5.2) and obtained for the
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Figure 2. Comparison between the numerically obtained axial velocity profile (symbols) to
the analytical solution (line).

boundary conditions Ro(0) = Ro0, Ri(0) = Ri0, wo(0) = Uf (feed speed) and w0(L) = Ud

(draw speed)

Ro = Ro0 e
βz

−2L +
γLe− βz

L

3μβUf (Ro0 − Ri0)[
(3Ri0 − Ro0)

(
1 − e− βz

2L

)
+

(
Ro0z

L

)
e

βz
2L

(
e− β

2 − 1
)]

, (5.3a)

Ri = Ri0e
− βz

2L +
γLe− βz

L

3μβUf (Ro0 − Ri0)[
(3Ro0 − Ri0)

(
1 − e− βz

2L

)
+

(
Ri0z

L

)
e

βz

2L

(
e− β

2 − 1
)]

, (5.3b)

w0 = Uf e
βz

L +
2γLe

βz

L

3μβ(Ro0 − Ri0)

[
e− βz

2L − 1 +

(
z

L

)(
1 − e− β

2

)]
(5.3c)

where β = ln(Ud/Uf ).
A numerical solution was obtained with the initial and outer radii set to 12 and

14 mm, respectively. The feed speeds and the draw feeds were fixed at Uf = 2 mm min−1

and Ud = 1300 mm min−1 and the draw length was fixed to 30 mm. Figure 2 shows
the comparison between the numerically obtained axial velocity and the velocoity
from (5.3c). The maximum error between the numerically obtained axial velocity
and the analytical solution was found to be less than 1 %. Figure 3 shows the
comparison between the numerically obtained evolution of the inner and outer radii
and the analytical solution. Once again the agreement between the analytical and the
numerical solutions is very good, and the maximum error is less than 1 %. For this
numerical solution, the outer and inner boundaries were each discretized using 150
points and the maximium axial space step was set to 0.06 mm. In figures 2 and 3,
the symbols represent the numerical solution and the line represents the analytical
solution. For ease of display, the numerical solution is shown in steps of 0.6 mm.
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Figure 3. Numerically and analytically obtained variation of inner and outer radii with
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Figure 4. Schematic of a fibre containing four circular holes, showing the geometric
parameters.

5.2. Cross-section with four circular holes

Next we consider a geometry with a circular cross-section containing four circular
holes of equal radii. Figure 4 shows a schematic of a cross-section containing four
holes of equal radii. Different scenarios are considered where the effects of surface
tension, viscosity, inertia, gravity and internal pressurization are examined. Finally,
the effect of draw speed (draw force) and feed speeds are examined. All the hole
boundaries are discretized using 125 points, and once again, the maximum deviation
from mass conservation was found to be less than 1 % in all cases simulated.

5.2.1. Four close holes with surface tension, no inertia and gravity

The simplest case to be studied is obtained by neglecting axial inertia and gravity
terms or by setting Re = 0 and St = 0. Figure 5 shows the neck-down profile of a four-
hole structure with Fd = 2.0 N and a feed speed Uf = 2 mm min−1, also showing initial
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Figure 5. Neck-down profile of a fibre with four holes: (a) Neck-down profile; (b) Initial
cross-section, z =0; and (c) final cross-section, z = L. Ca =62.1 × 103 for (a) and 62.1 × 104 for
(b) and (c).
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and final geometries after a draw length of 30 mm. We can define a non-dimensional
number similar to that of Fitt et al. (2002), to characterize the change in the size of
the holes. We define a collapse ratio

Cα = 1 −

√
(Aα(z)/A0(z))

(Aa(0)/A0(0))
, (5.4)

such that Cα =0 when the fibre evolves in a self-similar manner and Cα = 1 when the
holes completely collapse and negative values indicate hole expansion. It should be
noted here that hole expansion is not anticipated except in the presence of internal
pressurization. The form of the collapse ratio is chosen such that it reduces to the
form proposed by Fitt et al. (2002) when the hole shape remains the same throughout
the draw (e.g. the axisymmetric case). The variation of the collapse ratio along the
length gives an indication of the nature of the physical parameters in the problem.
From (2.21) it can be seen that the surface tension contribution to the total force
depends on the total circumference and the viscous stress contribution is dependent on
the product of the area and the axial velocity gradient. When the velocity gradients
are large, the viscous stresses dominate the evolution of the cross-section of the
fibre. The surface tension effects on the collapse ratio will be dominant only in the
initial portion of the draw when the circumference is large and the velocity gradients
are small. Finally, increasing the draw tension increases the initial velocity gradient,
decreasing the effect of surface tension and vice versa. It should be noted here that Fitt
et al. (2001, 2002) also observed that collapse due to surface tension was dominant
only in the initital part of the drawing. Similar to the expression of Fitt et al. (2001,
p. 1929), the sensitivity of the collapse ratio to the different physical parameters in
the problem can be expressed as

Cα ∝ γL

μUf ln(U/Uf )
. (5.5)

Numerical experiments were performed to examine the effect of surface tension
and viscosity and draw tension on the collapse ratio. Simulations were stopped if
a predetermined draw ratio was reached, a predetermined maximum length was
reached, or if there was a complete hole collapse. The effects of viscosity and surface
tension were analysed using the capillary number (Ca = μU/γ ), by systematically
changing the viscosity and the surface tension, keeping the draw tension (and the
initial velocity gradient) and the feed speed constant. In figure 5, the x-axis represents
the instantaneous draw ratio during the drawing and should not be interpreted as
the final draw ratio at the end of the draw. Figures 6a and 6b show the variation
of the collapse ratio with the draw ratio for different values of the Ca varying over
two orders of magnitude. First, we examine the effect of changing the viscosity. In
figure 6a, Ca is varied by keeping the surface tension constant and changing the
viscosity. Decrease in Ca values implies a decrease in the viscosity and vice versa.
It can be seen that the collapse ratio is significantly affected by this ratio and Cα

increases with increasing Ca when the viscosity is kept constant. However, the collapse
ratio asymptotically approaches some constant value and the draw ratio at which
this asymptotic value is reached remains approximately constant and independent of
Ca. From (2.21) we see that for constant draw tension and constant surface tension,
the velocity gradient decreases with increasing viscosity (increasing Ca). Thus, the
sintering effects increase with increasing viscosity in the intial stages of the draw,
as can be clearly seen in figure 6a. As the drawing progresses, the velocity gradient
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Figure 6. Variation of collapse ratio for one of the inner holes with draw speed: (a) variation
of collapse ratio for different Ca values; (b) variation of collapse ratio with Ca, keeping
viscosity constant; and (c) variation of collapse ratio for different draw tensions.

increases and the total circumference decreases, increasing the effect of viscosity and
reducing that of surface tension. Figure 6b shows the effect of changing surface
tension on the collapse ratio. As one would expect, we can see that the collapse
ratio increases with decreasing Ca (or increasing surface tension). It can be seen that
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the collpase ratio is strongly coupled to the velocity gradient, viscosity and surface
tension. It should be noted here that the results are seemingly in contradiction to the
prediction of (5.5). This is because the draw length required to prduce a given draw
ratio is not constant in figure 6a. By fixing the draw tension and surface tension, the
length required to produce the desired draw ratio increases with increasing viscosity.
Validity of (5.5a) was confirmed by performing a series of simulations in which the
draw length, draw ratio and surface tension were held constant and the viscosity was
varied. These results are not presented here for brevity. Figure 6b shows the effect
of surface tension on the collapse ratio. The collapse ratio increases with decreasing
Ca (or increasing surface tension), consistent with (5.5). The variation of Cα with
viscosity can also be interpreted in terms of the non-dimensional draw tension (Fd)
defined in (2.22). We see that with a constant applied tension, increasing viscosity
decreases Fd and the initial velocity gradients, thereby increasing the effects of surface
tension.

To examine the effects of the changes in the initial velocity gradient, the draw
tension was varied systematically, keeping Ca and the feed speed constant. Figure 6c

shows the variation of Cαwith the draw ratio for different values of the draw tension,
with constant surface tension and viscosity. Increasing the draw tension increases the
initial velocity gradient, thereby reducing the surface tension effects, causing a drop
in the asymptotic value of Cα . Increasing the draw tension decreases the length over
which the desired draw ratio is achieved and vice versa. Figures 6a and 6b can also be
interpreted in terms of required length of the hot zone to produce a particular draw
ratio. In figure 6a, the draw length required for the final draw ratio of 200 increases
from 6 mm to the set maximum of 60 mm, thus suggesting that surface tension effects
are more apparent in a drawing process with lower axial velocity gradients. Thus,
in a high-temperature (low-viscosity, low-Ca) process with a short draw length, very
good control can be achieved over the final dimensions of the fibre and the holes,
and numerical modelling of the process can be restricted to only a short portion of
the draw. However, when the draw length is longer and draw forces are moderate,
the entire process needs to be simulated to obtain predictions of the final dimensions
of the fibre and the holes.

We can also look at hole deformation of the closely spaced holes, since the final
shape of the holes can play an important role in determining the optical properties of
the fibre. Figure 7 shows the hole deformations for two different capillary numbers,
plotted at the same draw ratio, drawn over the same length of 60 mm. The change in
Ca in figure 7a is obtained by keeping the surface tension constant, and in figure 7b

the visccosity is kept constant. In figure 7b, the attention is resricted to the single hole
with its centre on the negative x-axis, and the values are normalized to the original
hole size. We observe in figure 7a that decrease in viscosity or increase in Ca causes
shape change. The hole-shape change with viscosity is related to the velocity gradient
at the given cross-section, and we obtain increasing shape change with increasing
velocity gradient or, in other words, increasing the draw tension will cause greater
shape change. The non-dimensional draw tension (Fd) is a good indicator of the hole-
shape change, with higher values of Fd causing greater shape change. Independent
simulations with different draw tension values have confirmed this. In figure 7b, we
observe that there is almost no change in shape, with a decrease in diameter caused
by surface tension.

In the example problem considered thus far, the outward surface normals have
been oriented pointing away from the centroid of the hole and we will refer to these
surfaces as convex. In completing the study of surface tension and viscosity effects, we
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shape change with change in viscosity and (b) shape change with change in surface tension.

will finally deal with a shape that is concave (outward normal is oriented towards the
centroid) in portions, and also illustrate that the model can handle arbitrarily shaped
cross-sections. Figure 8a shows the evolution of a star, shaped hole, with figures 8b,
8c and 8d showing the evolution of the cross-section at different axial distances. Here,
the star-shaped holes evolve towards a circular hole. The change in shape is caused
mainly by the viscous stresses. Although the final shape and size of the star-shaped
hole is affected by surface tension, we observe a similar transition to circular holes
even for the case with 0 surface tension. This example just serves to illustrate that the
model is capable of prediciting deformation of complicated structures with relatively
large in-plane curvatures.

5.2.2. Four close holes, with surface tension, axial inertia and axial gravity

Axial inertia and gravity are easily included into the solution procedure if a good
estimate of the first derivative of the axial velocity (wz(z = 0)) is available. If the draw
force Fd is provided a simple Newton–Raphson iterative scheme is used to estimate
wz at the start (see, for example, Press et al. 2002). Figure 9 shows the effects of gravity
and inertia on the collapse ratio, by comparing the variation of collapse ratio to the



Evolution of slender fibre with holes in the cross-section 177

–25 –20 –15 –10 –5 0 5 10 15 20 25
–20

–15

–10

–5

0

5

10

15

20

(a)

(b)

x (mm)

y 
(m

m
)

x
z

y

–5 –4 –3 –2 –1 0 1 2 3 4 5

–4

–3

–2

–1

0

1

2

3

4
(c)

(d)

y 
(m

m
)

–0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

x (mm)

y 
(m

m
)
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down profile, (b) initial cross-section, (c) shape at one-half length and (d) final cross-section.

no gravity and inertia solution for the example of four close circular holes of figure 4.
It can be seen that the collapse ratio is reduced by inertia and gravity because the
gravitational and inertial effects act like additional axial forces at least when gravity
is acting in the draw down direction. An opposite effect is expected when gravity
is acting against the draw down direction. Inertial effects are not expected to be
important except when very low draw tensions are used or high feed speeds or when
the fibre is very dense.

5.2.3. Four close holes with internal pressurization

Internal pressurization is already included into the solution procedure as it is
included in defining g(to) in (3.12). Numerical simulations were performed by keeping
the external hole overpressure equal to a constant value on all the holes. The numerical
results are obtained keeping Ca = 62.1 × 104 and St = 0 and Re =0 corresponding
the example of four circular holes in figure 6 with Fd = 2.0 N. Figure 10 shows the
variation of the collapse ratio for different values of the non-dimensional pressure,
corresponding to 0, 10 and 70 Pa of the dimensional hole overpressure. As indicated
by the scaling defined in § 2, it can be seen that the process is extremely sensitive to
the hole overpressure and it has to be within O(ε2) of the ambient pressure to avoid
complete explosion of the holes. It can be seen that collapse can be avoided and with a
careful control of the hole overpressure will lead to conditions of self-similar drawing
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(Cα = 0). Initially, when the holes are large, the pressurization plays an important role
in controlling the evolution of the cross-section.

6. Non-Isothermal drawing
Thus far, we have assumed that the temperature and, as a consequence, the

material properties remain constant throughout the drawing process in order to
simplify the mathematical analysis. In reality, all the material parameters, ρ, μ and γ ,
are functions of temperature. For most practical applications, μ changes by several
orders of magnitude for relatively modest changes in temperature, and all the other
material properties are only weak functions of the temperature. In proceeding with a
mathematical description of a non-isothermal drawing process, we assume that only
μ alone is a function of temperature and all the other parameters are independent
of the temperature. Also, we are interested only in the temperature distribution to
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determine its effect on the viscosity. So, here we do not attempt to solve the energy
equation but assume that a temperature distribution is provided. As before, we start
with the incompressible Navier–Stokes equations

∇ · q = 0, (6.1a)

ρ[qt + q · ∇q] = −∇p + ∇ · (2μE) + F, (6.1b)

where Eij = 1/2(∂ui/∂xj + ∂uj/∂xi). The boundary conditions for the Navier–Stokes
equations are identical to (2.3), and the kinematic condition is identical to (2.2). We
now expand the variables including the temperature as an asymptotic series in even
powers of ε. In addition, we assume a functional dependence for the temperature,
such that T̄ = T̄0(z̄, t̄) + ε2T̄1(x̄, ȳ, z̄, t̄) + O(ε4) + · · · . Small Biot number is required
for the in-plane temperature variation to be small (Wylie, Huang & Miura 2007).
From this assumption, the temperature (and thus the viscosity) is independent of
x and y up to leading order. We introduce a non-dimensional viscosity μ̄ = μ/μR ,
where μR is the viscosity at some reference temperature TR and a non-dimensinal
temperature T̄ = T/TR . Therefore, the non-dimensional viscosity can be expressed as
μ̄ = μ̄0 + ε2μ̄1 + O(ε4). The dimensionless parameters are redefined with respect to
the reference viscosity μR so that the Reynolds, Capillarity and Stokes numbers are
now given by

Re =
ρUL

μR

, Ca =
μRU

γR

and St =
ρL2g

μRU
.

Non-dimensionalizing and expanding the dependent variables as an asymptotic series,
the leading-order flow equations are identical to (2.8). The O(ε2) equations for the
axial momentum and boundary conditions are

μ0

[
w1xx + w1yy

]
= Re [w0t + w0w0z] + p0z − (μ0w0z)z − μ0w0z − Stcosβ in D, (6.2a)

μ0

[
w1xG0x + w1yG0y

]
= G0z(p0 − 2μ0w0z − γ̄ κ0) − μ0u0zG0x − μ0v0zG0y on ∂Gα = 0.

(6.2b)

Applying the solvability criterion to (6.2) and some involved manipulations, we
obtain the axial force balance equation for a non-isothermal process as

(3μ0Aw0z)z = ReA(w0t + w0w0z) − StA − 1

2
γ̄ Γ0z. (6.3)

It can be seen that (6.3) is very similar to (2.20), with the exception that the
viscosity appears inside the derivative on the left-hand side. For a given temperature
distribution, the values of μ0 and its derivative are known and the solution process
described in § 4 can be applied to solve the non-isothermal problem without difficulty.

7. Conclusions
The leading-order equations governing the evolution of slender viscous fibres with

the cross-section containing holes, during axial stretching under the influence of
surface tension, axial gravity, inertia and internal pressurization were derived. The
derivation follows earlier works of Dewynne et al. (1992) and Cummings & Howell
(1999) where the cross-section was simply connected and generalizes the equations
to multiply connected cross-sections. This process then decouples the Navier–Stokes
equations to the solution of two problems: one of an in-plane Stokes flow problem



180 Srinath S. Chakravarthy and Wilson K. S. Chiu

with surface tension-or pressure-driven free boundaries, coupled with a kinematic
condition that governs the evolution of the cross-section. The solution to the problem
is obtained numerically by repeatedly solving the S–L equation for the Stokes flow
problem and advancing the cross-section in space (and time) using the kinematic
condition. The solution presented here is restricted to cross-sections that had a
certain symmetry such that the centreline of the fibre did not translate or rotate
and when no initial twist or translation has been applied to the fibre. The model
for isothermal drawing was extended to include non-isothermal effects, which are
inherent in any real microstructured optical fibre drawing. This solution procedure
represents a huge simplification to solving the full three-dimensional Navier–Stokes
free-boundary problem.

Sample numerical solutions were computed for a geometry containing four closely
spaced holes, and effects of surface tension, inertia, gravity and internal pressurization
were determined. It was found that surface tension has a large effect on the final
geometry of the fibre. However, depending on the final velocity and the initial
velocity derivative (or draw tension), surface tension effects were important only
for some portion of the drawing process following which self-similar evolution was
observed. The collapse ratio was defined to characterize this effect and also to
characterize the degree of sintering. Hole-shape change is primarily governed by the
non-dimensional draw tension, with higher values producing greater shape change.
It was also found that inertia and gravity did not affect the shape of the holes but
played an important role in determining the degree of sintering in the process. Finally,
internal pressurization had a significant effect on the shape and size of the holes and
it was also determined that the hole overpressure has to be within O(ε2) so that the
holes do not explode.

In this paper, we have drawn from previous literature on two-dimensional viscous
sintering and the evolution of slender solid fibers and extended these ideas to predict
the evolution of fibres with holes in the cross-section. Due to the explicit nature of
the solution procedure, one of the significant engineering advantages is the ability to
reverse engineer a preform for a given final fibre geometry and drawing conditions,
thereby reducing the effort involved in preform preparation, which is considered to
be the most expensive part of optical fibre fabrication. Some possible extensions to
our work are to quantify effects in the three-dimensional sintering of closely packed
cylinders and other shapes.
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